\qquad

5.6 - Indirect Proofs (Part 1)

Write the first step of an indirect proof of the given statement.

1) A number g is divisible by 2 .
2) There are more than three red houses on the block.
3) $\triangle A B C$ is equilateral.
4) $m \angle B \cong 90$
5. $\angle C$ is not a right angle.
6) There are less than 15 pounds of apples in the basket.
7) If the number ends in 4 , then it is not divisible by 5 .
8) If $\overline{M N} \cong \overline{N O}$, then point N is on the perpendicular bisector of $\overline{M O}$.
9) If two right triangles have congruent hypotenuses and one pair of congruent legs, then the triangles are congruent.
10) If two parallel lines are intersected by a transversal, then alternate interior angles are congruent.
11) Fill in the blanks to prove the following statement: In right $\triangle A B C, m \angle B+m \angle C=90$.

Given: right $\triangle A B C$

Prove: $m \angle B+m \angle C=90$

Assume temporarily that $m \angle B+m \angle C$ \qquad . If $m \angle B+m \angle C$ \qquad
then $m \angle A+m \angle B+m \angle C$ \qquad . According to the Triangle Angle Sum

Theorem, $m \angle A+m \angle B+m \angle C=$ \qquad . This contradicts the previous
statement, so the temporary assumption is \qquad .
Therefore, \qquad -
12) Use indirect reasoning to eliminate all but one of the following answers. In what year was In what year was Barack Obama born?

$$
1809
$$

$$
1909
$$

1961
2000

Identify the two statements that contradict each other.
13)
I. $\triangle A B C$ is acute.
II. $\triangle A B C$ is scalene.
III. $\triangle A B C$ is equilateral.
14) I. $m \angle B \leq 90$
II. $\angle B$ is acute.
III. $\angle B$ is a right angle.
15)
I. $\overline{F A} \| \overline{A C}$
II. $\overline{F A}$ and $\overline{A C}$ are skew.
III. $\overline{F A}$ and $\overline{A C}$ do not intersect.
I. Victoria has art class from
9:00 to 10:00 on Mondays.
II. Victoria has math class from 10:30 to 11:30 on Mondays.
II. The centroid and the
III. $\triangle M N O$ is equilateral.
I. $\triangle M N O$ is acute.
III. Victoria has math class from 9:00 to 10:00 on Mondays.
17)
18)
III. $\triangle A B C$ such that $\angle C$ is acute.
orthocenter for $\triangle M N O$ are at different points.
I. $\triangle A B C$ such that $\angle A$ is obtuse.
II. $\triangle A B C$ such that ΔB is obtuse.
19) I. The orthocenter for $\triangle A B C$ is outside the triangle.
II. The median for $\triangle A B C$ is inside the triangle.
$\triangle N O$ is acute.
II. $\triangle A B C$ such that $\triangle B$ is obtuse.
III. $\triangle A B C$ is an acute triangle.

